Homework 12

Solution: (a) $v(0^+) = 100$ V; $V_F = 0$; the resistance seen by C is: $32 + 240||60 = 32 + 48 = 80 \text{ k}\Omega$; $\tau = 0.5 \times 10^{-6} \times 80 \times 10^3 = 0.04$ s; it follows that $v_C(t) = 100 \text{ e}^{-25t}$ V, t is in s.

- (b) From voltage division, $v_0(t) = (48/80)v_c(t) = 60e^{-25t}$ V.
- (c) $i_0(t) = v_0(t)/60 = e^{-25t}$ mA.
- (d) The total energy dissipated in the 60 k Ω resistor is $60 \times 10^3 \int_0^\infty i_0^2(t) dt =$

 $60 \times 10^{-3} \int_0^\infty e^{-50t} dt = \frac{60}{50} \times 10^{-3} \equiv 1.2 \text{ mJ.}$ Alternatively, The initial energy stored in the capacitor is $0.5 \times 0.5 \times 10^{-6} \times 10^4 \equiv 2.5 \text{ mJ}$; the energy dissipated in the 48 k Ω resistor in series with the 32 k Ω resistor is $2.5 \times 48/80 = 1.5 \text{ mJ}$; this energy is dissipated in 60 k Ω in parallel with 240 k Ω , and divides in proportion to the conductances. The energy dissipated in the 60 k Ω resistor is therefore

$$\frac{1/60}{1/60+1/240} \times 1.5 = \frac{4}{5} \times 1.5 = 1.2 \text{ mJ}.$$

Solution: Before the switch is opened, the inductor behaves as a short circuit; the source current is 80/15 = 16/3 A, so that $i_L(0^+) = (16/3)/2 = 8/3$ A; $I_{LF} = 0$; the resistance seen by inductor is $5 + 60||20 = 20 \Omega$; $\tau = 0.2/20 = 0.01$ s. It follows that $i_L(t) = (8/3)e^{-100 t}$ A, *t* is in s; from current division, $v_O(t) = -15i_L(t) = -40e^{-100t}$ V, *t* is in s.

Solution: After the switch has been

closed for a long time, the capacitor behaves as an open circuit; $6||3 = 2 k\Omega$; in series with 2 k Ω , this is 4 k Ω ; in parallel with 12 k Ω , this is 3 k Ω ; from voltage division, the initial voltage on the capacitor is 6 V; the current through the 2 k Ω resistor is 6/4 = 1.5 mA, the voltage across the parallel combination is 3 V, and I_X = 1 mA. When the switch is opened the capacitor voltage does not change at this instant, so I_X does not change. Hence, $i_X(0^+) = 1$ mA; $I_{XF} = 0$; the resistance seen by the capacitor after the switch is opened is 3 kΩ; $\tau = (200/3) \times 10^{-6} \times 3 \times 10^{3} = 0.2$ s. It follows that $i_X(t) = e^{-5t}$ mA, t is in s.

Determine: (a) $i_L(t)$ for $0 \le t \le 35$ ms; (b) $i_L(t)$ for $t \ge 35$ ms; (c) the percentage of the energy initially stored in the inductor that is dissipated in the 18 Ω resistor.

- Solution: (a) When the switches have been closed for a long time, the inductor behaves as a short circuit, To determine the initial value of i_L , the voltage source in series with 4 Ω can be transformed to a current source of 15 A in parallel with 4 Ω . It follows from current division that $i_{L}(0^{+}) = 15 \frac{1/3}{1/4 + 1/12 + 1/6 + 1/3} = 6$. Between t = 0 and t = 35 ms, the resistance seen by the inductor is 18||9 = 6Ω; hence, $\tau = 0.15/6 = 0.025$ s = 25 ms. It follows that $\dot{l}_{L}(t) = 6e^{-t/25}$ A, $0 \le t \le 10^{-10}$ 35 ms
 - (b) At t = 35 ms, $i_L(35) = 6e^{-35/25} = 1.48$ A; the resistance seen by the inductor after both switches are open is 9 Ω , so that $\tau = 0.15 \times 9 \equiv 50/3$ ms. It follows that $i_1 = 1.48e^{-3(t-35)/50}$, $t \ge 35$ ms
 - (c) For $0 \le t \le 35$ ms, the current in the 18 Ω resistor is $i_L/3 = 2e^{-t/0.025}$ A, t is in s;

the energy dissipated during this period is $18 \times 4 \int_0^{0.035} e^{-2t/0.025} dt = 0.8453$ J. The initial energy stored in the inductor is $0.5 \times 0.15 \times (6)^2 = 2.7$ J. The percentage is $(0.8435/2.7) \times 100 = 31.31\%$.

P11.1.13 The switch in Figure P11.1.13 is moved to position 'b' at t = 0, after being in position 'a' for a long time. Determine $v_C(t)$ for $t \ge 0^+$.

Solution: Just before the switch is moved, $V_{C0} = -30$ V; V_{CF} = -20 V; $\tau = 50 \times 10^3 \times 2 \times 10^{-6} = 0.1$ s. Hence,

Figure P11.1.13