Homework 12

P11.1.5 The switch in Figure P11.1.5 is moved to position 'b' at $t=0$ after being in position ' a ' for a long time.
Determine, for $t \geq 0^{+}$: (a) $v_{C}(t)$;
(b) $v_{o}(t)$; (c) $i_{o}(t)$;
(d) the total

energy dissipated in the $60 \mathrm{k} \Omega$ resistor as $t \rightarrow$
Figure P11.1.5
Solution: (a) $v\left(0^{+}\right)=100 \mathrm{~V} ; V_{F}=0$; the resistance seen by C is: $32+240| | 60=32+48=$ $80 \mathrm{k} \Omega ; \tau=0.5 \times 10^{-6} \times 80 \times 10^{3}=0.04 \mathrm{~s}$; it follows that $v_{C}(t)=100 e^{-25 t} \mathrm{~V}, t$ is in s.
(b) From voltage division, $v_{o}(t)=(48 / 80) v_{c}(t)=60 e^{-25 t} \mathrm{~V}$.
(c) $i_{0}(t)=v_{o}(t) / 60=e^{-25 t} \mathrm{~mA}$.
(d) The total energy dissipated in the $60 \mathrm{k} \Omega$ resistor is $60 \times 10^{3} \int_{0}^{\infty} i_{O}^{2}(t) d t=$ $60 \times 10^{-3} \int_{0}^{\infty} e^{-50 t} d t=\frac{60}{50} \times 10^{-3} \equiv 1.2 \mathrm{~mJ}$. Alternatively, The initial energy stored in the capacitor is $0.5 \times 0.5 \times 10^{-6} \times 10^{4} \equiv 2.5 \mathrm{~mJ}$; the energy dissipated in the 48 $\mathrm{k} \Omega$ resistor in series with the $32 \mathrm{k} \Omega$ resistor is $2.5 \times 48 / 80=1.5 \mathrm{~mJ}$; this energy is dissipated in $60 \mathrm{k} \Omega$ in parallel with $240 \mathrm{k} \Omega$, and divides in proportion to the conductances. The energy dissipated in the $60 \mathrm{k} \Omega$ resistor is therefore $\frac{1 / 60}{1 / 60+1 / 240} \times 1.5=\frac{4}{5} \times 1.5=1.2 \mathrm{~mJ}$.

P11.1.6 The switch in
Figure P11.1.6 is opened at t = 0 after being closed for a long time. Determine
 for $t \geq 0^{+}$.

Solution: Before the switch is opened, the inductor behaves as a short circuit; the source current is $80 / 15=16 / 3 \mathrm{~A}$, so that $i_{L}\left(0^{+}\right)=(16 / 3) / 2=8 / 3 \mathrm{~A} ; I_{L F}=0$; the resistance seen by inductor is $5+60| | 20=20 \Omega ; \tau=0.2 / 20=0.01 \mathrm{~s}$. It follows that $i_{L}(t)=(8 / 3) e^{-100 t} \mathrm{~A}, t$ is in s ; from current division, $v_{0}(t)=-15 i_{L}(t)=-40 e^{-100 t} \mathrm{~V}, t$ is in s .

P11.1.10 The switch in Figure P11.1.10 Is opened at $t=0$ after being closed for a long time. Determine $i_{X}(t), t \geq 0^{+}$.
Solution: After the switch has been

Figure P11.1.10 closed for a long time, the capacitor behaves as an open circuit; $6 \| 3=2 \mathrm{k} \Omega$; in series with $2 \mathrm{k} \Omega$, this is $4 \mathrm{k} \Omega$; in parallel with $12 \mathrm{k} \Omega$, this is $3 \mathrm{k} \Omega$; from voltage division, the initial voltage on the capacitor is 6 V ; the current through the $2 \mathrm{k} \Omega$ resistor is $6 / 4=1.5 \mathrm{~mA}$, the voltage across the parallel combination is 3 V , and I_{X} $=1 \mathrm{~mA}$. When the switch is opened the capacitor voltage does not change at this instant, so I_{X} does not change. Hence, $i_{X}\left(0^{+}\right)=1 \mathrm{~mA} ; I_{X F}=0$; the resistance seen by the capacitor after the switch is opened is $3 \mathrm{k} \Omega ; \tau=(200 / 3) \times 10^{-6} \times 3 \times 10^{3}=0.2$ s. It follows that $i_{X}(t)=e^{-5 t} \mathrm{~mA}, t$ is in s .

P11.1.12 Both switches In Figure P11.1.12 have been closed for a long time. The first switch opens at $t=0$ and the second switch opens at $t=35 \mathrm{~ms}$.

Figure P11.1.12

Determine: (a) $i_{L}(t)$ for $0 \leq t \leq 35 \mathrm{~ms}$; (b) $i_{L}(t)$ for $t \geq 35 \mathrm{~ms}$; (c) the percentage of the energy initially stored in the inductor that is dissipated in the 18Ω resistor.
Solution: (a) When the switches have been closed for a long time, the inductor behaves as a short circuit, To determine the initial value of i_{L}, the voltage source in series with 4Ω can be transformed to a current source of 15 A in parallel with 4Ω. It follows from current division that $i_{L}\left(0^{+}\right)=15 \frac{1 / 3}{1 / 4+1 / 12+1 / 6+1 / 3}=6$.

Between $t=0$ and $t=35 \mathrm{~ms}$, the resistance seen by the inductor is $18 \| 9=6$ Ω; hence, $\tau=0.15 / 6=0.025 \mathrm{~s} \equiv 25 \mathrm{~ms}$. It follows that $i_{L}(t)=6 e^{-t / 25} \mathrm{~A}, 0 \leq t \leq$ 35 ms
(b) At $t=35 \mathrm{~ms}, i_{L}(35)=6 e^{-35 / 25}=1.48 \mathrm{~A}$; the resistance seen by the inductor after both switches are open is 9Ω, so that $\tau=0.15 \times 9 \equiv 50 / 3 \mathrm{~ms}$. It follows that $i_{L}=1.48 e^{-3(t-35) / 50}, t \geq 35 \mathrm{~ms}$
(c) For $0 \leq t \leq 35 \mathrm{~ms}$, the current in the 18Ω resistor is $i / 3=2 e^{-t / 0.025} \mathrm{~A}, t$ is in s ;
the energy dissipated during this period is $18 \times 4 \int_{0}^{0.035} e^{-2 t / 0.025} d t=0.8453 \mathrm{~J}$.
The initial energy stored in the inductor is $0.5 \times 0.15 \times(6)^{2}=2.7 \mathrm{~J}$.
The percentage is $(0.8435 / 2.7) \times 100=31.31 \%$.

P11.1.13 The switch in Figure P11.1.13 is moved to position ' b ' at $t=0$, after being in position ' a ' for a long time. Determine $v_{c}(t)$ for $t \geq 0^{+}$.

Solution: Just before the switch is moved, $V_{C 0}=-30 \mathrm{~V}$; $V_{C F}$ $=-20 \mathrm{~V} ; \tau=50 \times 10^{3} \times 2 \times 10^{-6}=0.1 \mathrm{~s}$. Hence,

Figure P11.1.13

